Quantitative Evaluation of Subsurface Damage by Improved Total Internal Reflection Microscopy
نویسندگان
چکیده
منابع مشابه
Total internal reflection fluorescence (TIRF) microscopy.
Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region ("optical section"). The method is based on the principle that when excitation light is totally internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid, an electromagnetic field, ca...
متن کاملTopic Introduction Total Internal Reflection Fluorescence Microscopy
The goal in fluorescence microscopy is to detect the signal of fluorescently labeled molecules with great sensitivity and minimal background noise. In epifluorescence microscopy, it is difficult to observe weak signals along the optical axis, owing to the overpowering signal from the out-of-focus particles. Confocal microscopy uses a small pinhole to produce thin optical sections ( 500 nm), but...
متن کاملThree-dimensional total internal reflection microscopy.
We investigate the inverse-scattering problem that arises in total internal reflection microscopy. An analytic solution to this problem within the weak-scattering approximation is used to develop a novel form of three-dimensional microscopy with subwavelength resolution.
متن کاملIdentification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy
BACKGROUND AND PURPOSE Insulin stimulates the transport of glucose in target tissues by triggering the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Resistance to insulin, the major abnormality in type 2 diabetes, results in a decreased GLUT4 translocation efficiency. Thus, special attention is being paid to search for compounds that are able to enhance this translocati...
متن کاملTransient state monitoring by total internal reflection fluorescence microscopy.
Triplet, photo-oxidized and other photoinduced, long-lived states of fluorophores are sensitive to the local environment and thus attractive for microenvironmental imaging purposes. In this work, we introduce an approach where these states are monitored in a total internal reflection (TIR) fluorescence microscope, via the characteristic variations of the time-averaged fluorescence occurring in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9091819